COURSE DESCRIPTION CARD - SYLLABUS

Course name

Introduction to programming in Matlab

Course

Field of study

Electronics and Telecommunications
Area of study (specialization)

Level of study
Second-cycle studies
Form of study
full-time

Year/Semester

I/I
Profile of study
general academic
Course offered in
english
Requirements
elective

Number of hours

Lecture

Laboratory classes

Other (e.g. online)

30
Tutorials
0
Number of credit points
5

30
Projects/seminars

- / -

Lecturers

Responsible for the course/lecturer:
Responsible for the course/lecturer:
dr inż. Sławomir Maćkowiak,
slawomir.mackowiak@put.poznan.pl

Prerequisites

Has a systematic knowledge of mathematical analysis, algebra and theory of probability.
Has a systematic knowledge of computer architecture. Has a systematic knowledge of microcontroller, microprocessor and microprocessor system architecture and programming in assembly language, and architecture and programming of specialized processors.

POZNAN UNIVERSITY OF TECHNOLOGY
EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

Has a systematic knowledge of operating systems and data bases. Has the knowledge of computer resource management and protection technologies.

Is able to extract information from Polish or English language literature, databases and other sources. Is able to synthesize gathered information, draw conclusions, and justify opinions.

Is able to communicate in English or in Polish in the professional environment and other environments.
Is capable of studying autonomously
Is aware of the limitations of his/her current knowledge and skills; is committed to further self-study. Demonstrates responsibility and professionalism in solving technical problems. Is able to participate in collaborative projects

Course objective

Learning the fundamentals of structured programming based on the examples in Matlab. Learning to organise numerical data in data structures, to control the flow of a program, and to express a solution in a form of a structured algorithm. Learning the fundamentals of computational optimizations.

Course-related learning outcomes

Knowledge
Knowing the rules of construction of computer programs. Knowing the syntax and programming practices of Matlab environment

Skills

Is able to analyze the operation of multimedia systems. Is able to solve problems related to multimedia systems, also problems including a research component.

Can implement in software basic computational algorithms using Matlab programming language

Social competences

Knows the limits of own knowledge and skills, understands the need for ongoing education
Methods for verifying learning outcomes and assessment criteria
Learning outcomes presented above are verified as follows:
Individual reports from lab exercises
Written exam or oral exam

Programme content

Introduction to the Matlab environment. The principles of vectorised computations and linear algebra notation in Matlab. Data structures, vectors, matrices, sparse data, and their representations. Direct, indirect, relative and logical indexing. Advanced data manipulation. Basic statements, loops and conditional branches. Functional programming. Recursion. Implementation of basic 1D and 2D signal processing: filtering, transforms, quantization, basic pattern analysis.

POZNAN UNIVERSITY OF TECHNOLOGY
EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Teaching methods

Traditional lecture
Laboratory - in the early phase of the discussion, then individual / or group work method implementation of the project.

Bibliography
Basic

Additional

1. S.J. Chapman, MATLAB Programming for Engineers, Cengage Learning, 2007
2. H. Moore, MATLAB for Engineers (Esource/Introductory Engineering and Computing), Prentice Hall, 2011
3. T. Dutoit, F. Marques, Applied Signal Processing: A MATLAB-based Proof of Concept, Springer 2009

Breakdown of average student's workload

	Hours	ECTS
Total workload	125	5,0
Classes requiring direct contact with the teacher	70	3
Student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam)${ }^{1}$	55	2

[^0]
[^0]: ${ }^{1}$ delete or add other activities as appropriate

